Engineers roll up their sleeves--and then do same with inductors

12/14/2012 Liz Ahlberg, U of I News Bureau

ECE Associate Professor [profile:xiuling] led a team of Illinois who developed 3-D rolled-up inductors that have a footprint 100 times smaller without sacrificing performance.

Written by Liz Ahlberg, U of I News Bureau

Xiuling Li
Xiuling Li

On the road to smaller, high-performance electronics, University of Illinois researchers have smoothed one speed bump by shrinking a key, yet notoriously large element of integrated circuits.

Three-dimensional rolled-up inductors have a footprint more than 100 times smaller without sacrificing performance. The researchers published their new design paradigm in the journal Nano Letters.

“It’s a new concept for old technology,” said team leader and ECE Associate Professor Xiuling Li.

Inductors, often seen as the sprawling metal spirals on computer chips, are essential components of integrated circuits. They store magnetic energy, acting as a buffer against changes in current and modulating frequency—especially important in radio-frequency wireless devices. However, they take up a lot of space. Inductance depends on the number of coils in the spiral, so engineers cannot make them smaller without losing performance.

In addition, the larger the area the inductor occupies, the more it interfaces with the substrate the chip is built on, exacerbating a hindering effect called parasitic capacitance. Researchers have developed some three-dimensional inductor structures to solve the dual problems of space and parasitic capacitance, but these methods are complex and use techniques that are difficult to scale up to manufacturing levels.

ECE Associate Professor Xiuling Li led a team of Illinois researchers who developed a new design paradigm for inductors. Processed while flat, the inductors then roll up on their own, taking up much less space on a chip. Image by Xiuling Li.
ECE Associate Professor Xiuling Li led a team of Illinois researchers who developed a new design paradigm for inductors. Processed while flat, the inductors then roll up on their own, taking up much less space on a chip. Image by Xiuling Li.

The new inductor design uses techniques Li’s group previously developed for making thin films of silicon nitrate, merely tens of nanometers in thickness, that roll themselves up into tubes. The research team used industry-standard two-dimensional processing to pattern metal lines on the film before rolling, creating a spiral inductor.

“We’re making 3-D structures with 2-D processing,” said Li, a researcher in the Micro and Nanotechnology Lab. “Instead of spreading this out in a large area to increase inductance, we can have the same inductance but packed into a much smaller area.”

Using the self-rolling technique, the researchers can shrink the area needed for a radio-frequency inductor to a scant 45 microns by 16 microns—more than 100 times smaller than the area an equivalent flat spiral would require.

The design can be adjusted to fit target parameters including metal thickness and type, frequency, tube diameter and number of turns. According to Li, this technique could be used for capacitors and other integrated circuit elements as well.

Jose E Schutt-Aine
Jose E Schutt-Aine

Now, Li’s group is working to produce high-performance inductor prototypes, in collaboration with ECE Professor Jose E Schutt-Aine. Preliminary experimental data show strong correlation with the modeled designs.

“Once we have optimized this process, we should be able to make an integrated circuit with a completely different platform that could be much smaller,” Li said. “It’s an ambitious goal.”

The National Science Foundation and the Office of Naval Research supported this work. Illinois visiting researcher Wen Huang, postdoctoral researcher Xin Yu, ECE graduate student Paul Froeter, and Mechanical Science and Engineering Professor Placid Ferreira were co-authors of this study. Li also is affiliated with the Beckman Institute for Advanced Science and Technology and the Frederick Seitz Materials Research Lab.


Share this story

This story was published December 14, 2012.