ECE 449

ECE 449 - Machine Learning

Spring 2026

TitleRubricSectionCRNTypeHoursTimesDaysLocationInstructor
Machine LearningCS446P378289LCD31230 - 1345 T R  1320 Digital Computer Laboratory Huan Zhang
Machine LearningCS446P439433LCD41230 - 1345 T R  1320 Digital Computer Laboratory Huan Zhang
Machine LearningCS446PU31421LCD31230 - 1345 T R  1320 Digital Computer Laboratory Huan Zhang
Machine LearningECE449P378290LCD31230 - 1345 T R  1320 Digital Computer Laboratory Huan Zhang
Machine LearningECE449P470857LCD41230 - 1345 T R  1320 Digital Computer Laboratory Huan Zhang
Machine LearningECE449PU70856LCD31230 - 1345 T R  1320 Digital Computer Laboratory Huan Zhang

Official Description

Course Information: Same as CS 446. See CS 446.

Goals

The goal of Machine Learning is to build computer systems that can adapt and learn from data. In this course we will cover three main areas, (1) discriminative models, (2) generative models, and (3) reinforcement learning models. In particular we will cover the following: linear regression, logistic regression, support vector machines, deep nets, structured methods, learning theory, kMeans, Gaussian mixtures, expectation maximization, VAEs, GANs, Markov decision processes, Q-learning and Reinforce.

Topics

  • linear regression,
  • logistic regression,
  • support vector machines,
  • deep nets,
  • structured methods,
  • learning theory basics,
  • kMeans,
  • Gaussian mixtures,
  • expectation maximization,
  • VAEs,
  • GANs,
  • Markov decision processes,
  • Q-learning
  • Reinforce

Topical Prerequisites

  • Linear Algebra
  • Probability
  • Multivariate Calculus
  • Python

Texts

No text.

ABET Category

Engineering Science: 1 credit

Last updated

1/22/2020